膜翅目飞行肌线粒体功能:增加代谢能力会增加氧化应激

Hymenoptera flight muscle mitochondrial function: Increasing metabolic power increases oxidative stress

 

 

 

Keywords:Flight muscle; Glycerol 3-phosphate dehydrogenase; Mitochondria; Reactive oxygen species; Wing loading
关键词:飞行肌肉; 甘油 3-磷酸脱氢酶; 线粒体; 活性氧; 机翼装载

非哺乳动物:其他无脊柱动物
作者:Hedges CP, Wilkinson RT, Devaux JBL, Hickey AJR
出版期刊:《Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology》 2019/1/22


Abstract:

Insect flight is a high intensity activity, but biomechanical and metabolic requirements may vary depending on life style and feeding mode. For example, bees generally feed on pollen and nectar, whereas wasps also actively hunt and scavenge heavy prey. These variations in metabolic demands may result in different capacities of metabolic pathways in flight muscle, and utilisation some of these pathways may come at a cost of increased free radical production. To examine how metabolic requirements and oxidative stress vary between species, we explored the variation in flight mechanics and metabolism of the honeybee (Apis mellifera), bumblebee (Bombus terrestris), and German wasp (Vespula germanica). Wing structures and flight muscle properties were compared alongside measures of oxygen flux and reactive oxygen species (ROS) production from permeabilised flight muscle. The wasp wing structure is best adapted for carrying heavy loads, with the highest wing aspect ratio, lowest wing loading, and highest flight muscle ratio. Bumblebees had the lowest wing aspect ratio and flight muscle ratio, and highest wing loading. Although wasps also had the highest rates of oxygen consumption during oxidative phosphorylation, oxygen consumption did not increase in the wasp muscle following chemical uncoupling, while it did for the two bee species. While mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) mediated oxygen flux was greatest in wasps, muscle fibres released greater amounts of ROS through this pathway. Overall, the wasp has maximised lifting capacities through varying wing and flight muscle mass and by maximising OXPHOS capacities, and this accompanies elevated ROS production.

 

文章摘要:

昆虫飞行是一项高强度活动,但生物力学和代谢要求可能因生活方式和喂养方式而异。例如,蜜蜂通常以花粉和花蜜为食,而黄蜂也积极捕食和清除重型猎物。代谢需求的这些变化可能导致飞行肌肉中代谢途径的能力不同,而利用这些途径中的一些可能以增加自由基产生为代价。为了研究物种之间的代谢需求和氧化应激如何变化,我们探索了蜜蜂 (Apis mellifera)、大黄蜂 (Bombus terrestris) 和德国黄蜂 (Vespula Germanica) 的飞行力学和新陈代谢的变化。将机翼结构和飞行肌肉特性与透化飞行肌肉的氧通量和活性氧 (ROS) 产生量进行了比较。黄蜂机翼结构最适合承载重物,具有最高的机翼展弦比、最低的机翼载荷和最高的飞行肌肉比。大黄蜂的机翼展弦比和飞行肌肉比最低,机翼载荷最高。尽管黄蜂在氧化磷酸化过程中的耗氧量也最高,但在化学解偶联后黄蜂肌肉的耗氧量并没有增加,而这两种蜜蜂物种的耗氧量却增加了。虽然线粒体甘油 3-磷酸脱氢酶 (mGPDH) 介导的氧通量在黄蜂中最大,但肌肉纤维通过该途径释放更多量的 ROS。总体而言,黄蜂通过改变机翼和飞行肌肉质量以及最大化 OXPHOS 能力来最大化提升能力,这伴随着 ROS 产量的提高。

 


点击链接即可查看和下载文章:https://www.sciencedirect.com/science/article/pii/S1095643318303246?via%3Dihub
文章题目、关键词与摘要译文仅用于参考。 

APPLICATION CASE

应用案例